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region 27rl/h = 180° must be avoided in either path

length. Thus, if the phase shifter were to be used in a

phased array of much length and large sweep angle,

many 90° bits would have to be used for the longer

time-delay paths. When the switched-line phase

shifter is used with Schiffman constant phase-delay

lines, the long lengths of the lines constrain the con-

stant phase-shift bandwidth to about ~ octave. The

new lumped-element high-pass low-pass phase shifter

gives a very good constant phase shift for Aq$ <90°. A

practical octave bandwidth constant phase-shift phase

shifter would use the new type phase shifters for all but

the 180° bit, which could be a reflection device made

using a very carefully matched quarter-wavelength

3-dB coupler and a pair of diodes.
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Equivalent Network for Interacting

Thick Inductive Irises

TULLIO E. ROZZI, =MBER, IEEE

Absfracf—An equivalent network is presented for symmetric INTRODUCTION
inductive irises in rectangular waveguides. Thk model exactly de-
scribes the effects of finite thickness and interaction via higher order

T

HE NECESSITY of finding an exact equivalent

modes due to the presence of neighboring irises, as in practical wave- network representation for inductive irises having

guide filters. finite thickness and possibly interacting via higher

order modes arises in the design of high-prec~sion wave-
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guide filters. Current design practice assumes the irises

Philips’ Gloeilampenfabrieken, Elndhoven, The Netherlands. as infinitely thin and noninteracting. A thickness cor-
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a

Fig. 1. Geometry (top view).

rection is then introduced which is strictly valid in the

case of very thick irises only.

Account of the effect of higher order mode interaction

is normally not taken. This results in incorrect values of

intracavity coupling and ‘(effective” cavity length. The

resulting deviations are then compensated by means of

tuning elements such as posts or screws.

This paper introduces an accurate equivalent net-

work that considers the combined effect of finite thick-

ness and interaction from the start. Elegant solutions

for the limiting vases of the general problem of the

thick interacting inductive iris are well known.

The variational approach to the problem of one

infinitely thin inductive iris is discussed by Collin [1].

A fortunate choice of the trial field over the iris aper-

ture, originally due to Schwinger [2], allows one to

express the equivalent susceptance as a fast converging

series from which the “quasi-static” limit is directly

recovered. The general case of an arbitrary incident

field has been treated by Palais [3] using the same type

of trial field functions. One (isolated) thick iris has also

been studied by Collin [1]. He assumes this time, an

eigenmode expansion of the iris, as the trial field in his

variational solution. The above-mentioned contributors

use an “aperture” formulation of the discontinuity

problem.

The interaction of two infinitely thin inductive irises

has been discussed by Palais [4] employing an

“obstacle” formulation. In this paper the aperture

formulation will be adopted and the Schwinger func-

tions will be assumed for the trial field. This allows the

solution of the infinitely thin iris to be used directly in

conjunction with the equivalent network representation

of the thick iris. The interaction effect is introduced by

a suitable modification of the modal admittances ap-

pearing in the expression for the susceptance of the

infinitely thin iris.

The situation under study is depicted in Fig. 1 for a

two-element filter. The irises are taken to be symmetri-

cal since this is a case of practical importance and the

asymmetric case involves essentially no new features.

I I:nm

I

Fig. 2. Equivalent network representation.

Making use of the mirror symmetry with respect to

the plane z = t +1 we shall split the problem into an

even and an odd part by locating a magnetic and an

electric wall, respectively, at the plane of symmetry.

Let us assume that a TE1o mode with unit amplitude

is impinging from the left. All other modes in the main

guide and all modes in the iris aperture are below cutoff.

Because of the symmetry in the y-direction, only TE~t

modes with odd n’s are excited. An intuitive and direct

way of obtaining a network representation is shown in

Fig. 2. All occurring modes in the thick iris are carried

by separate transmission lines coupled by transformers

at the interfaces S and S’. The fields over S and S’

in Fig. 2 are assumed to be two expansions of orthog-

onal functions over the aperture with undetermined

coeficientsl In Fig. 2, BO ‘represents one half of the

susceptance of an infinitely thin iris in the absence

of interaction, as computed from the field assumed

over S. B’ is the equivalent of B Oin the presence of the

magnetic/electric wall at z = t+1. The transformer ratio

associated with a certain iris eigenmode is given by the

ratio of the “scalar product” (in the functional sense) of

the assumed field with the relevant modal field and the

product of the assumed field with the exciting field.

Since the guide is infinite in the negative z-direction,

but is terminated by an electric or magnetic wall at

z = t +1, the transformer ratios on the two sides are

unequal. The computation of B’ is similar to that of B.
but account is taken of the electric or magnetic wall

termination in the modal admittances. The whole

equivalent network is determined by minimizing the

power stored in the even- and odd-mode one-port net-

works of Fig. 2 for a unit excitation amplitude, The

case of single or noninteracting thick irises is also

treated. The solution in this case can be conveniently

written in the form of a perturbation from the quasi-

static value. This provides a rather compact alternative

solution to the one already available [3].

Numerical and experimental results are compared for
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one single thick iris and two identical irises in the

presence of interaction.

THEORY: TWO INTERACTING IRISES

In the network representation of Fig. 2, -B,( Y = –jll,)

is one half of the susceptance of an infinitely thin sym-

metric iris normalized to the characteristic admittance

of the TE1o mode in the feeding guide [1].
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Further

E(x) the trial field on the aperture;

F(O) = dE/dx ;

P the propagation constant of the TEIO mode in

the guide;

r. the wave number of the TEno mode (with n

odd) ;

o! =sin (~d)/(2a);

and the coefficients P., of the expansion

())1 TX

Cos —— = ~ Pn, Cos (70)
a T= 1

are given in [1], [3].

By taking the trial function F(d) as

2N+ 1

F(o) = ~ A, Cos (M)
k=l
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with Al= 1 and TIC being the Chebyshev polynomial of

dle first kind, we see that (1) reduces to
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+ xx” (5)

i=3,5,... 2

Neglecting the sum, in BO yields the quasi-static approxi-

mation
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The transformer ratios on the left-hand side of the iris

(Fig. 2) are given by
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~l,here Vn is the voltage coupling of the wzth -aperture

eigenmode <2/d $~ (x) with the trial field and VO k the

voltage coupling of the trial field with the impinging

TEIO wave. Thus
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On S’ we assume the trial field E’(x) such that

dE’ (x) “v+ 1

_—— - F’(o) = ~ p,,. Cos (M) (lo)
dx – /:=1,3, . . .

with WI= 1.

The transformers n~’ on the right-hand sicle of the

iris are given by (8) with the A’s replaced by the p’s.

The thick iris is represented by the paralllel connection

of an infinite number of transmission lines of length t

(below cutoff) between ideal transformers.

The equivalent pi-network representation for a length

t of transmission line (below cutoff) with propagation

constant y is

yll — yu = – jB~ = ~ (coth (~t) – csch (W)) (ha)

y~~ = – jB, = ~ csch (yt). (llb)

This equivalent network and the elimination of the

transformers are shown in Fig. 3. The thick iris is repre-

sented by the parallel connection of the equivalent

circuit of each mode and the overall equivalent pi

network has the following elements:

yll — y12 = – jb. = k?
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Fig. 3. Equivalent network for one iris mode.

y12 = — jbb = 5 ;“ nmnm’ csch (-y~f)
m=l ,3,5, . . .

V!J2— ylz = — jb~ = 2;
?7L =1,3,5,...

. [mm”coth (y~t) – nmnm’ csch (7J)].

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MAY 1972

The total driving-point susceptance for the even/odd

case is therefore

B= BO+ba+bb. (bC+B’–b)/(bb+bC+ B’–b). (14)

The driving-point admittance for the even/odd one-

port junction has been written in terms of the yet unde-

termined N+ 2 amplitudes At, X5, ~2N+l; N8 . . . ~2N+u

Its actual value is obtained by minimizing the power

stored in the junction for a unit voltage excitation,

i.e., minimizing the function B @3, X6 o . .’ ~2N+l; I-L3,

~K””” N2N+1) Or equivalently solving the simultaneous

equations

(3B c3B
o,

Z=G=
i=3,5. ..,2~+l7 (15)

for the even/odd problem by means of standard nu-

merical methods.

ONE ISOLATED THICK IRIS

The susceptance for one isolated thick iris is given by:

(12b)
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The occurrence of infinite m sums in (12) originates

from the fact that we have expressed the trial fields not

as combinations of actual aperture eigenmodes ~~(~),

but rather as expansions of the type (2).

Although these two sets of functions do not coincide,

their similarity is apparent, Already for relatively small

values of I m and k 1, a~~2 =0, and thus the series in (12)

converges quite rapidly. The computation of B’ from

the trial field on S’ proceeds in a manner similar to that

of BO. In this case, however, account must be taken of

the fact that now the transmission lines carrying the

modes are not terminated by their characteristic ad-

mittances, but rather by a magnetic or an electric wall

located at z = t+2.

The expression for B’ is then obtained by replacing the

A’s in (5) with the ~’s and each r. with

rn.
{

tanh (r.z)

coth (r.1)

[

.
. z –( ). n – f? . Pn,Pnj + ; dij
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The first term above represents the quasi-static contri -

bution to the thin-iris susceptance, the second term

AB o is the contribution of higher order modes to the

thin-iris susceptance, and the third term AB t is due to

the thickness effect. Also we recognize that AB ,,, in (16)

are quadratic forms in h

ABO, i = ktihfo,~k (17)

where

~’ = (~1, ~3, . - . , ~2N+l), Al=l (18)

in the even,/odd case, respectively.
and the matrices MO, itl~ are real symmetric and positive

A length of transmission line with unit characteristic
definite, and can thus be diagonalized simultaneously.

admittance terminated by an open/short circuit is the
This allows us to express our solution in a very non-

equivalent network for the ground mode between z = t
venient form. In fact, as a consequence of Courant–

andz=t+l.
Fisher’s theorem [4], the maximum value of AB

Its contribution to the admittance is

{

j tan (@)
y=jb=

–j cot (~1).
(13)

=ABO –AB, is given by the maximum eigenvalue u of

M= M-o-M-t.

The total evenlodd susceptance is then
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Fig. 4. Multiple iris configuration.
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Fig. .5. (a) Normalized modal amplitudes in single thick iris (Al= 1). (b) E field configuration on aperture.

Also, the amplitude vector % is the eigenvector of .T1

relative to a. The determination of u and X is a very

fast standard numerical procedure.

MORE THAN Two IRISES IN CASCADE

The extension to symmetrical filters having more

than two interacting irises with different apertures

proceeds in general as illustrated in Fig. 4. Use is

again made of the halfway symmetry of the filter to

reduce the problem to that of an even- and odd-case

one-port junction. A trial field is assumed at every inter-

face. Since a two-term trial field gives quite accurate re-

sults, the number of variables involved is not excessive

up to a moderately large number of irises. Looking from

one iris towards the following one, the aperture of the

latter can be considered closed by a metallic screen su-

per-imposed by the appropriate magnetic current dis-

tribution (e.g., E field). The susceptance located at the

first aperture is thus B’ (for the odd case, now being

the length of the waveguide between the two irises).

If the filter has an odd number of irises, the halfway

symmetry plane is located on the midplane of a thick

iris and the terminal susceptance is given by (16). The

overall susceptance (14) is obtained by standard net-

work analysis. For n irises and M’ terms in the trial

field, the problem is eventually reduced to the solution

of a system of 2 x (3Z-1) X (n/2 for n ev’en) (n+l/2 for

n odd) simultaneous equation for the evlen and the odd

mode separately. Because of linearity, the actual field

E(x) over each aperture is given by

~(%) = ~(&,en(*) + -&d(x)). (20)

NUMERICAL AND EXPERIMENTAL RESUI,TS

The reflection coefficient for a single thick iris having

the following dimensions, in centimeters,

guidewidth u = 1.0668,

iris aperture b = 0.447,

iris thickness t=o.050,

was computed over the band 18–25 C,Hz (K band)

corresponding to 2.50 >&/a> 1.36.

A two-term trial field

F(e) = Cos (e) + x, Cos (30) (21)

was employed. The relative amplitudes of ~~” and A30

(even and odd, respectively) are given in Fig. 5(a) over

the whole frequency range. Fig. 5(b) compares the

computed configuration of E(x) = jF(O(x) ) dx with that

of the TE1o aperture eigenmode at~=22981 CxHz. The
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reflection coefficient
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Fig. 6. Computed and experimental reflection modulus for one and two irises.

computed values of the modulus of the reflection coeffi-

cient of the iris are compared in Fig. 6 (curve A ) with

the experimental ones obtained by slotted-line mea-

surements.

Curve B in the same figure was obtained by taking

the quasi-static approximation for the iris susceptance

and accounting for thickness as described in [5]. The

latter approach consists in considering the thickness

effect due only to the fundamental mode of the aperture.

For not too thin irises it is tantamount to reducing the

transmission coefficient through a thin iris by a factor

exp ( —~t/d. ~1 — (2d/k)2). It is seen that the modulus

of the susceptance for an isolated iris is approximated

fairly well by this method, although its frequency

~ dependence is slightly incorrect.

In order to experimentally check the model in pres-

ence of interaction, a simple filter was built consisting

of two identical irises with the dimensions given above

spaced O.651 cm apart. The modulus of the reflection

coefficient was measured over the K band. These

values, corrected for the losses for large values of the

reflection coefficient, are compared in Fig. 6 with the

numerical values obtained by means of a two-term

trial field (curve C) and a three-term trial field (curve

D). Curve E in Fig. 6 has been computed by means of

(16) which is exact for a single iris assuming the two

irises to be noninteracting, i.e., that the higher order

modes excited at the location of the two irises are not

coupled. This assumption leads to an overestimate of

the magnitude of the ‘(effective” susceptance, while the

bandwidth of the resonance is correct.

Finally, curve F has been computed using the quasi-

static approximation for infinitely thin irises with

exponential thickness correction, neglecting higher

order mode interaction. This is the method commonly

used in the practical realization of filters.

It is apparent from E and F that neglecting higher

order mode interaction is the most serious approxima-

tion involved in the existing method.

The amplitudes of the fields on S and S’ obtained

with the two- and three-term approximations at reso-

nance frequency (j= 22.981 GHz) are compared in the

following table.

Two terms ~d~ –O .2446 –o .1095
–0.1099 –0.2397

Three terms ~d~ –0.3170 –0.1019 –0.1838 –0.0415
–0.1821 –0.0420 –0.3133 –0.1017

(X, =p,=l)

Fig. 7 further illustrates the results of the three-term

trial-field computation. In Fig. 7(a) and (b) the relative

amplitudes versus frequency are plotted, while in Fig.

7 (c) and (d) the fields at resonance are compared with

the distribution of the TE1o mode on the aperture on S

md S’, respectively.

Fig. 8 illustrates the effect of mechanical tolerances

upon the filter characteristics. The “computer experi-

ments” were performed by using a two-term field ex-

pansion.
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The following limiting values for the tolerances were

assumed:

d =0.447 YO.005

t =0.050 fo.oo2

1 =0.651 ~0.005.

One parameter at a time was allowed to take its

extremal values with the other two held constant. A

number of similar computations, with different values

for the iris aperture thickness and distance between

irises, show that the first and the last parameters

a much more important role than thickness.

The above tolerances are arbitrary outer limits

in fact, those allowed in the experimental models

play

and,

were

much tighter. Also the frequency range was purposely

chosen to be K band. At lower frequencies, the filter

characteristics become increasingly less sensitive with

the increasingly favorable ratio of mechanical toler-

ances to guided wavelength.

CONCLUSIONS

The simultaneous effect of finite thickness and inter-

action via higher order modes for symmetric inductive

irises has been investigated by means of a variational

approach.

An exact equivalent network is proposed whose ele-

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TJ?CHNIQUES, MAY 1972

ments can be derived by means of a simple computer

procedure. The method is applicable to the analysis of

waveguide filters having up to a moderate number of

irises.

Computer results are in good agreement with mea-

surements for two experimental models: A single thick

iris, and two thick irises in the presence of higher order

mode interaction.

Further, the theory illustrates the limits of the ap-

proximations involved in the current characterization

of inductive irises.
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