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region 2wl/A=180° must be avoided in either path
length. Thus, if the phase shifter were to be used in a
phased array of much length and large sweep angle,
many 90° bits would have to be used for the longer
time-delay paths. When the switched-line phase
shifter is used with Schiffman constant phase-delay
lines, the long lengths of the lines constrain the con-
stant phase-shift bandwidth to about % octave. The
new lumped-element high-pass low-pass phase shifter
gives a very good constant phase shift for Ap <90°. A
practical octave bandwidth constant phase-shift phase
shifter would use the new type phase shifters for all but
the 180° bit, which could be a reflection device made
using a very carefully matched quarter-wavelength
3-dB coupler and a pair of diodes.

REFERENCES

{11 E. M. Rutz and J. E. Dye “Frequency translation by phase
modula;ion,” in 1957 IRE WESCON Conv. Rec., pt. 1, pp.
201-207.

[2] W. A, Little, J. Yuan, and C. C. Snellings, “Hybird integrated
circuit digital phase shifters,” in 1967 IEEE Ini. Solid-State
Circuits Conf. Dig., pp. 58-59.

[3] A. E. Cohen, “Some aspects of microwave phase shifters using
v;gaggors,” in 1962 Proc. 6th Nat. Conv. Military Electron., pp.
328-332.

[4] B. W. Battershall and S. P. Emmons, “Optimization of diode
structures for monolithic integrated circuits,” IEEE Trans.
Microwave Theory Tech., vol. MTT-16, pp. 445-450, July 1968.

[5] H. N. Dawirs and W. G. Swarner, “A very fast, voltage-con-
trolled, microwave phase shifter,” Microwave J., pp. 99-107,
June 1962.

{61 J. F. White, “High power, p-i-r diode controlled, microwave

323

transmission phase shifters,” ITEEE Trans. Microwave Theory
Tech., vol. MTT-13, pp. 233-242, Mar. 1965.

[71 P. Onno and A. Plitkins, “Lumped constant, hard substrate,
high power phase shifters,” presented at the IEEE MIC
(Materials and Design) Seminar, Monmouth College, West
Long Branch, N. J., June 1970.

“Mmlature multi-killowatt PIN diode MIC digital phase
shifters " in 1971 IEEE-GMTT Int. Microwave Symp. Dig.,
Catalog no. 71 C25-M, pp. 22-23.

[8] J. D. Young, “Integrated circuitry for electronic beam steering
of wide-band slot antennas,” Ohio State Univ., Columbus,
Contract AF 33(657)-10386, AD 474 650, Nov. 10, 1965.

[9] R. G. Stewart and M. N. Guiliano, “X-band integrated diode
phase shifters,” in 1968 IEEE GMTT Int. Microwave Symp.
Dig., pp. 147- 154.

[10] E. J. Wilkinson, L. I. Parad, and W. R. Connerney, “An X-band
electronically steerable phased array,” Microwave J., pp. 4348,
Feb. 1964.

[11] R, V. Garver, “Theory of TEM diode switching,” IRE Trans.
Microwave Theory Tech., vol. MTT-9, pp. 224-238, May 1961.

[12] , “Microwave diode control devices (switches, limiters,

attenuators, and phase shlftere) Harry Diamond Labs., Wash-

ington, D. C,, Final Rep., in press.

C. H. Graulmg and D. B. Geller, “A broad-band frequency

translator with 30-dB suppression of spurious sidebands,” IEEE

Trans, Microwave Theory Tech. (Corresp.), vol. MTT-18, pp.

651-652, Sept. 1970.

R. V. Garver, D. Bergfried, S. Raff, and B. O. Weinschel,

“Errors in Su_measurements due to residual SWR of the mea-

surement equipment,” in 197/ IEEE-GMTT Int. Microwave

Symp. Dig., Catalog no. 71 C25-M, pp. 38-39; also JEEE Trans.

Microwave Theory Tech., vol. MTT—ZO Dp- 61- 69, Jan. 1972.

R. V. Garver, “Broadband binary 180° diode phctse modula-

tors,” IEEE Trans. Microwave Theory Tech., vol. MTT-13, pp.

32-38, Jan. 1965.

“360° varactor linear phase modulator,” IEEE Trans.

erow(we Theory Tech., vol. MTT-17, pp. 137-147, Mar. 1969.
W. Burns and L. Stark “PIN diode advance high-power

phase shifting,” Microwaves, pp. 38-48, Nov. 1965.

(18] E. N. Phillips, “The uncertainties of phase measurement,”
Microwaves, pp. 14-21, Feb., 1965.

[13]

(14]

{15}

[16]
17} R

Equivalent Network for Interacting
Thick Inductive Irises

TULLIO E. ROZZI, MEMBER, IEEE

Abstract—An equivalent network is presented for symmetric
inductive irises in rectangular waveguides. This model exactly de~
scribes the effects of finite thickness and interaction via higher order
modes due to the presence of neighboring irises, as in practical wave-
guide filters.
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INTRODUCTION
THE NECESSITY of finding an exact equivalent

network representation for inductive irises having
finite thickness and possibly interacting via higher
order modes arises in the design of high-precision wave-
guide filters. Current design practice assumes the irises
as infinitely thin and noninteracting. A thickness cor-
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Fig. 1. Geometry (top view).

rection is then introduced which is strictly valid in the
case of very thick irises only.

Account of the effect of higher order mode interaction
is normally not taken. This results in incorrect values of
intracavity coupling and “effective” cavity length. The
resulting deviations are then compensated by means of
tuning elements such as posts or screws.

This paper introduces an accurate equivalent net-
work that considers the combined effect of finite thick-
ness and interaction from the start. Elegant solutions
for the limiting vases of the general problem of the
thick interacting inductive iris are well known.

The wvariational approach to the problem of one
infinitely thin inductive iris is discussed by Collin [1].
A fortunate choice of the trial field over the iris aper-
ture, originally due to Schwinger [2], allows one to
express the equivalent susceptance as a fast converging
series from which the “quasi-static” limit is directly
recovered. The general case of an arbitrary incident
field has been treated by Palais [3] using the same type
of trial field functions. One (isolated) thick iris has also
been studied by Collin [1]. He assumes this time, an
eigenmode expansion of the iris, as the trial field in his
variational solution. The above-mentioned contributors
use an “aperture” formulation of the discontinuity
problem.

The interaction of two infinitely thin inductive irises
has been discussed by Palais [4] employing an
“obstacle” formulation. In this paper the aperture
formulation will be adopted and the Schwinger func-
tions will be assumed for the trial field. This allows the
solution of the infinitely thin iris to be used directly in
conjunction with the equivalent network representation
of the thick iris. The interaction effect is introduced by
a suitable modification of the modal admittances ap-
pearing in the expression for the susceptance of the
infinitely thin iris,

The situation under study is depicted in Fig. 1 for a
two-element filter. The irises are taken to be symmetri-
cal since this is a case of practical importance and the
asymmetric case involves essentially no new features.
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Fig. 2. Equivalent network representation.

Making use of the mirror symmetry with respect to
the plane z=:¢+4! we shall split the problem into an
even and an odd part by locating a magnetic and an
electric wall, respectively, at the plane of symmetry.

Let us assume that a TEjy mode with unit amplitude
is impinging from the left. All other modes in the main
guide and all modes in the iris aperture are below cutoff.
Because of the symmetry in the y-direction, only TE,,
modes with odd #'s are excited. An intuitive and direct
way of obtaining a network representation is shown in
Fig. 2. All occurring modes in the thick iris are carried
by separate transmission lines coupled by transformers
at the interfaces .S and S’. The fields over S and S
in Fig. 2 are assumed to be two expansions of orthog-
onal functions over the aperture with undetermined
coefficients. In Fig. 2, By represents one half of the
susceptance of an infinitely thin iris in the absence
of interaction, as computed from the field assumed
over S. B’ is the equivalent of B, in the presence of the
magnetic/electric wall at 2=¢4I. The transformer ratio
associated with a certain iris eigenmode is given by the
ratio of the “scalar product” (in the functional sense) of
the assumed field with the relevant modal field and the
product of the assumed field with the exciting field.
Since the guide is infinite in the negative z-direction,
but is terminated by an electric or magnetic wall at
z=t¢-+1I, the transformer ratios on the two sides are
unequal. The computation of B’ is similar to that of By
but account is taken of the electric or magnetic wall
termination in the modal admittances. The whole
equivalent network is determined by minimizing the
power stored in the even- and odd-mode one-port net-
works of Fig. 2 for a unit excitation amplitude. The
case of single or noninteracting thick irises is also
treated. The solution in this case can be conveniently
written in the form of a perturbation from the quasi-
static value. This provides a rather compact alternative
solution to the one already available [3].

Numerical and experimental results are compared for
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one single thick iris and two identical irises in the
presence of interaction.

THEORY: TWO INTERACTING IRISES

In the network representation of Fig. 2, Bo(Y = —jBy)
is one half of the susceptance of an infinitely thin sym-
metric iris normalized to the characteristic admittance
of the TEj, mode in the feeding guide [1].
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Neglecting the sum, in B, vields the quasi-static approxi-

mation
d
By = T cot? <1r_) (6)
af3 a

The transformer ratios on the left-hand side of the iris
(Fig. 2) are given by

Mm=——5  (m=1,3-") M

where V., is the voltage coupling of the mth-aperture
eigenmode v/2/d ¥m(x) with the trial field and V, is the
voltage coupling of the trial field with the impinging
TE, wave. Thus
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On S’ we assume the trial field E’'(x) such that

dE’(r 2N+1

—~—~) =F(0) = >, w-cos (kb) (10)
dx fe=1,8, 0+

with M1 == 1.

The transformers #.’ on the right-hand side of the
iris are given by (8) with the N's replaced by the u’s.
The thick iris is represented by the parallel connection
of an infinite number of transmission lines of length ¢
(below cutoff) between ideal transformers.

The equivalent pi-network representation for a length
¢t of transmission line (below cutoff) with propagation
constant vy is

b=y = — jBa = % (coth (v) — csch (v8)) (11a)

Vig = — ij = %CSCh (’yt). (llb)

This equivalent network and the elimination of the
transformers are shown in Fig. 3. The thick iris is repre-
sented by the parallel connection of the equivalent

circuit of each mode and the overall equivalent pi
network has the following elements:

§ o

m=1,3,5,+ 6
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Fig. 3. Equivalent network for one iris mode.
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The occurrence of infinite m sums in (12) originates
from the fact that we have expressed the trial fields not
as combinations of actual aperture eigenmodes ¥, (x),
but rather as expansions of the type (2).

Although these two sets of functions do not coincide,
their similarity is apparent. Already for relatively small
values of |m and &/, am?~0, and thus the series in (12)
converges quite rapidly. The computation of B’ from
the trial field on §’ proceeds in a manner similar to that
of By. In this case, however, account must be taken of
the fact that now the transmission lines carrying the
modes are not terminated by their characteristic ad-
mittances, but rather by a magnetic or an electric wall
located at z=t-+1.

The expression for B’ is then obtained by replacing the
N'sin (5) with the u’s and each T',, with

r {tanh (T.D)
coth (T,0)

in the even/odd case, respectively.

A length of transmission line with unit characteristic
admittance terminated by an open/short circuit is the
equivalent network for the ground mode between z=t¢
and z=t+1

Its contribution to the admittance is

4 tan (B0)

y=ib= {—j cot (B). (13)
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The total driving-point susceptance for the even/odd
case is therefore

B=Botbe+bs (0.+ B —b)/ (by+be+ B —b).

The driving-point admittance for the even/odd one-
port junction has been written in terms of the yet unde-
termined N-+2 amplitudes N3, Ns, Newar; M3 - Manir
Its actual value is obtained by minimizing the power
stored in the junction for a unit voltage excitation,

(14)

i.e., minimizing the function B(As, N © - “Newva1] Ma
Ms - * - Mawvy1) Or equivalently solving the simultaneous
equations
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for the even/odd problem by means of standard nu-
merical methods.
ONE IsOLATED THicK IRIS

The susceptance for one isolated thick iris is given by:
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The first term above represents the quasi-static contri-
bution to the thin-iris susceptance, the second term
AB, is the contribution of higher order modes to the
thin-iris susceptance, and the third term AB, is due to
the thickness effect. Also we recognize that ABy,; in (16)
are quadratic forms in A

ABo,t = ?\.tM(),p\. (17)

where
(18)

and the matrices My, M, are real symmetric and positive
definite, and can thus be diagonalized simultaneously.
This allows us to express our solution in a very con-
venient form. In fact, as a consequence of Courant—
Fisher’s theorem [4], the maximum value of AB
=AB,—AB, is given by the maximum eigenvalue ¢ of
M=My—M.
The total even/odd susceptance is then

A= Ay, As, - - 0, Aangn), AM=1

19)

B = Bq static — O
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Fig. 5.

Also, the amplitude vector A is the eigenvector of M
relative to ¢. The determination of o and & is a very
fast standard numerical procedure.

MORE THAN Two IRISES IN CASCADE

The extension to symmetrical filters having more
than two interacting irises with different apertures
proceeds in general as illustrated in Fig. 4. Use is
again made of the halfway symmetry of the filter to
reduce the problem to that of an even- and odd-case
one-port junction. A trial field is assumed at every inter-
face. Since a two-term trial field gives quite accurate re-
sults, the number of variables involved is not excessive
up to a moderately large number of irises. Looking from
one iris towards the following one, the aperture of the
latter can be considered closed by a metallic screen su-
per-imposed by the appropriate magnetic current dis-
tribution (e.g., E field). The susceptance located at the
first aperture is thus B’ (for the odd case, now being
the length of the waveguide between the two irises).

If the filter has an odd number of irises, the halfway
symmetry plane is located on the midplane of a thick
iris and the terminal susceptance is given by (16). The
overall susceptance (14) is obtained by standard net-
work analysis. For # irises and M terms in the trial

(a) Normalized modal amplitudes in single thick iris (\;=1). (b) E field configuration on aperture.

field, the problem is eventually reduced to thesolution
of a system of 2 X (M ~1) X (n/2 for n even) (n-+1/2 for
»n odd) simultaneous equation for the even and the odd
mode separately. Because of linearity, the actual field
E(x) over each aperture is given by

E(x) = %(Eeven(x) + Eodd(x))' (20)

NUMERICAL AND EXPERIMENTAL RESULTS

The reflection coefficient [or a single thick iris having
the following dimensions, in centimeters,

guidewidth a=1.06068,
iris aperture b=0.447,
iris thickness t=10.050,

was computed over the band 18-25 GHz (K band)
corresponding to 2.50 >\, /a >1.36.
A two-term trial field

F(8) = cos (8) + Az cos (36)

(21)

was employed. The relative amplitudes of A and Ag°
(even and odd, respectively) are given in Fig. 5(a) over
the whole frequency range. Fig. 5(b) compares the
computed configuration of E(x) = [F((x)) dx with that
of the TEy, aperture eigenmode at f=22.981 GHz. The
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Fig. 6. Computed and experimental reflection modulus for one and two irises.

computed values of the modulus of the reflection coeffi-
cient of the iris are compared in Fig. 6 (curve 4) with
the experimental ones obtained by slotted-line mea-
surements.

Curve B in the same figure was obtained by taking
the quasi-static approximation for the iris susceptance
and accounting for thickness as described in [5]. The
latter approach consists in considering the thickness
effect due only to the fundamental mode of the aperture.
For not too thin irises it is tantamount to reducing the
transmission coefficient through a thin iris by a factor
exp (—mt/d-4/1—(2d/\)?). It is seen that the modulus
of the susceptance for an isolated iris is approximated
fairly well by this method, although its frequency
dependence is slightly incorrect.

In order to experimentally check the model in pres-
ence of interaction, a simple filter was built consisting
of two identical irises with the dimensions given above
spaced 0.651 cm apart. The modulus of the reflection
coefficient was measured over the K band. These
values, corrected for the losses for large values of the
reflection coefficient, are compared in Fig. 6 with the
numerical values obtained by means of a two-term
tria! field (curve C) and a three-term trial field (curve
D). Curve E in Fig. 6 has been computed by means of
(16) which is exact for a single iris assuming the two
irises to be noninteracting, i.e., that the higher order
modes excited at the location of the two irises are not
coupled. This assumption leads to an overestimate of
the magnitude of the “effective” susceptance, while the
bandwidth of the resonance is correct.

Finally, curve F has been computed using the quasi-
static approximation for infinitely thin irises with
exponential thickness correction, neglecting higher
order mode interaction. This is the method commonly
used in the practical realization of filters.

It is apparent from E and F that neglecting higher
order mode interaction is the most serious approxima-
tion involved in the existing method.

The amplitudes of the fields on S and S’ obtained
with the two- and three-term approximations at reso-
nance frequency (f=22.981 GHz) are compared in the
following table.

S S’
A3 As M3 M5
Two tertms even  —0.2446 —0.1095
odd —0.1099 —0.2397
Three terms even —0.3170 —0.1019 —0.1838 —0.0415
odd —0.1821 -0.0420 —0.3133 —0.1017

M=m=1)

Fig. 7 further illustrates the results of the three-term
trial-field computation. In Fig. 7(a) and (b) the relative
amplitudes versus frequency are plotted, while in Fig.
7(c) and (d) the fields at resonance are compared with
the distribution of the TEi, mode on the aperture on S
and 5, respectively.

Fig. 8 illustrates the effect of mechanical tolerances
upon the filter characteristics. The “computer experi-
ments” were performed by using a two-term field ex-
pansion.
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The following limiting values for the tolerances were
assumed:

d=0.447 £0.605
¢t =0.050£0.002
1 =0.651+0.005.

One parameter at a time was allowed to take its
extremal values with the other two held constant. A
number of similar computations, with different values
for the iris aperture thickness and distance between
irises, show that the first and the last parameters play
a much more important role than thickness.

The above tolerances are arbitrary outer limits and,
in fact, those allowed in the experimental models were
much tighter. Also the frequency range was purposely
chosen to be K band. At lower frequencies, the filter
characteristics become increasingly less sensitive with
the increasingly favorable ratio of mechanical toler-
ances to guided wavelength.

CONCLUSIONS

The simultaneous effect of finite thickness and inter-
action via higher order modes for symmetric inductive
irises has been investigated by means of a variational
approach.

An exact equivalent network is proposed whose ele-
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ments can be derived by means of a simple computer
procedure. The method is applicable to the analysis of
waveguide filters having up to a moderate number of
irises.

Computer results are in good agreement with mea-
surements for two experimental models: A single thick
iris, and two thick irises in the presence of higher order
mode interaction.

Further, the theory illustrates the limits of the ap-
proximations involved in the current characterization
of inductive irises.
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